ON THE *p*-REDUCED ENERGY OF A GRAPH

MIRJANA LAZIĆ

ABSTRACT. Let G be a simple connected graph of order n and let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the spectrum of G. Then the sum $S_k^l(G) = |\lambda_{k+1}| + |\lambda_{k+2}| + \cdots + |\lambda_{n-l}|$ is called (k, l)-reduced energy of G, where k, l are two fixed nonnegative integers [2]. In this work, we make a generalization of the (k, l)-reduced energy, as follows: for any fixed $p \in N$, the sum $S_k^l(G, p) = |\lambda_{k+1}|^p + |\lambda_{k+2}|^p + \cdots + |\lambda_{n-l}|^p$ is called the *p*-th (k, l)-reduced energy of the graph G. We also here introduce definitions of some other kinds of the *p*-reduced energies and we prove some properties of them.

1. INTRODUCTION

In this paper we consider only simple connected graphs. The vertex set of a graph G is denoted by V(G), and its order by |G|. The spectrum of such a graph is the set $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of eigenvalues of its 0-1 adjacency matrix [1].

Let N_0 be the set of all nonnegative integers and $l \in N_0$ be a fixed number. For any graph G with |G| = n > l the sum of eigenvalues $|\lambda_1| + |\lambda_2| + \cdots + |\lambda_{n-l}|$ is denoted by $S^l_+(G)$ and is called *l*-positive reduced energy of G [2]. In this work we shall define the sum $S^l_+(G, p) = |\lambda_1|^p + |\lambda_2|^p + \cdots + |\lambda_{n-l}|^p$ which is called the *p*-th *l*-positive reduced energy of the graph G. It contains at least the largest eigenvalue $\lambda_1(G)$ of G. We note that $|\lambda_1| \ge 1$, hence $S^l_+(G, p) \ge 1$ for any graph G. For any real $a \ge 1$ and any $l \in N_0$ and $p \in N$, we can consider the class of graphs $E^l_+(p, a) = \{G : S^l_+(G, p) \le a\}.$

Now, we prove an important property of the general class $E_{+}^{l}(p, a)$.

Theorem 1. For every constant $a \ge 1$ and for any fixed $l \in N_0$ and $p \in N$, the class of connected graphs $E_+^l(p, a) = \{G : |\lambda_1|^p + \cdots + |\lambda_{n-l}|^p \le a\}$ is finite.

Proof. Let a be any real number $(a \ge 1)$ and l be nonnegative integer. Let G be a graph of order n > l from the class $E_{+}^{l}(p, a)$. Then

(1)
$$S^l_+(G,p) = |\lambda_1|^p + \dots + |\lambda_{n-l}|^p \le a,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 05C50.

Key words and phrases. Simple graphs, Energy of the graph.

which provides that

(2)
$$\sum_{|\lambda_i| \ge 1} |\lambda_i|^p \le \sum_{i=1}^{n-l} |\lambda_i|^p + \sum_{i=n-l+1}^n |\lambda_i|^p \le a + \sum_{i=n-l+1}^n |\lambda_1|^p = a + l \cdot |\lambda_1|^p \le a(l+1)$$

Relations (1) and (2) now give

(3)
$$2(n-1) \le 2m = \sum_{i=1}^{n} |\lambda_i|^2 \le \sum_{|\lambda_i| < 1} |\lambda_i| + \sum_{|\lambda_i| \ge 1} |\lambda_i|^p \le (n-1) \cdot 1 + a(l+1)$$

where m is the number of edges of the graph G. Using (3) we find that $n \leq a(l+1) + 1$, which completes the proof.

Next, let $k, l \in N_0$ and $p \in N$ be any fixed numbers. For any graph G with |G| = n > k + l, the sum of eigenvalues $|\lambda_{k+1}| + |\lambda_{k+2}| + \cdots + |\lambda_{n-l}|$ is denoted by S_k^l and is called (k, l)-reduced energy of G. The sum of p-th degrees of eigenvalues $|\lambda_{k+1}|^p + |\lambda_{k+2}|^p + \cdots + |\lambda_{n-l}|^p$ is denoted by $S_k^l(G, p)$ and is called the p-th (k, l)-reduced energy of the graph G. For any real a > 0, for any $k, l \in N_0$, and for $p \in N$, we can consider the class of graphs

$$E_k^l(p,a) = \{G : S_k^l(G,p) \le a\}.$$

We note that the *p*-th (0, k)-reduced energy of G is *p*-th k-positive reduced energy of G. We can always assume that $k, l \in N_0$ and $p \in N$.

Since the complete bipartite graph K_m^n belongs to the class $E_k^l(p, a)$ for any $m, n \in N$, the class $E_k^l(p, a)$ is always infinite. In what follows, we will prove an important property of this kind of energy on the set so-called canonical graphs.

We say that two vertices $x, y \in V(G)$ are equivalent in G and write $x \sim y$ if x is non-adjacent to y, and x and y have exactly the same neighbors in G. Relation \sim is an equivalence relation on the vertex set V(G). The corresponding quotient graph is denoted by \tilde{G} , and is called the canonical graph of G.

Consequently, for any real a > 0 and $k, l, p \in N$, we can consider the class of the corresponding canonical graphs

 $\tilde{E}_k^l(p,a) = \{G : G \in E_k^l(p,a) \text{ is a canonical graph}\}.$

If k = l, then $S_k^k(p, a)$, $E_k^k(p, a)$, $\tilde{E}_k^k(p, a)$ are simply denoted by $S_k(p, a)$, $E_k(p, a)$ and $\tilde{E}_k(p, a)$, respectively.

We now prove an important property of the class $\tilde{E}_k(p, a)$ $(a > 0, k, p \in N)$. It is based on two theorems proved in [3].

Theorem 2. For every constant a > 0 and any positive integers $k, p \in N$, the class of connected graphs $\tilde{E}_k(p, a)$ is finite.

Proof. On the contrary, we shall suppose that for some a > 0 (a is a positive integer) and $k, p \in N$ the set $\tilde{E}_k(p, a)$ is infinite. By Theorem proved in [3], for

any real number A > 0, there exists a graph $G \in \tilde{E}_k(p, a)$, which has q > A nonzero eigenvalues. This graph will satisfy the relation

(4)
$$|\lambda_{k+1}|^p + |\lambda_{k+2}|^p + \dots + |\lambda_{n-k}|^p \le a$$

Suppose that $\lambda_r > \lambda_{r+1} = \cdots = \lambda_{r+s} = 0 > \lambda_{r+s+1}$, where s = n - q is the multiplicity of zero of this graph. The characteristic polynomial of G is then

$$P_n(\lambda) = \lambda^s (\lambda^q + a_1 \lambda^{q-1} + \dots + a_q),$$

where $|a_q| = \lambda_1 \cdots \lambda_r \cdot |\lambda_{r+s+1}| \cdots |\lambda_n|$.

By Theorem also proved in [3], we shall suppose that s = 0 and thus n = q. Also, we can assume that n is so large that we have $\sqrt{n} \ge a + 6k$.

It is clear that $|\lambda_i| \le n-1$ for $i \in \{1, 2, ..., k\} \cup \{n-k+1, n-k+2, ..., n\}$, and $|\lambda_i| \le \sqrt{n}$ for i = k+1, k+2, ..., n-k.

We can assign with t the total number of eigenvalues λ_i , with $|\lambda_i| \leq 1/\sqrt{n}$ (i = k + 1, k + 2, ..., n - k). It is easy to see that t > a + 4k. On the contrary, we would have that there exist at least n - (2k + t) eigenvalues λ_i $(k + 1 \leq i \leq n - k)$ with $|\lambda_i| > 1/\sqrt{n}$. By relation (4) we have

(5)
$$a \ge \sum_{i=k+1}^{n-k} |\lambda_i|^p > \frac{n - (2k+t)}{\sqrt{n}} > \sqrt{n} - \frac{a + 6k}{\sqrt{n}}.$$

From relation $\sqrt{n} \ge a + 6k$ and relation (5) we have $a > \sqrt{n} - 1$ what is a contradiction.

Denote with t_0 the total number of all eigenvalues $\lambda_i (i = k + 1, k + 2, ..., n - k)$ with $|\lambda_i| > 1$. By relation (4) we have

(6)
$$a \ge |\lambda_{k+1}|^p + \dots + |\lambda_{n-k}|^p \ge \sum_{|\lambda_i|>1} |\lambda_i|^p \ge t_0,$$

which provides that $t_0 \leq a$.

We now have

$$a_n| = (|\lambda_1| \cdots |\lambda_k|)(|\lambda_{k+1}| \cdots |\lambda_{n-k}|)(|\lambda_{n-k+1}| \cdots |\lambda_n|) \leq \\ \leq (n-1)^{2k} \underbrace{\sqrt{n} \cdot \sqrt{n} \cdots \sqrt{n}}_{t_0} \underbrace{\cdot \underbrace{\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} \cdots \frac{1}{\sqrt{n}}}_{t}}_{t} \underbrace{\cdot \underbrace{1 \cdot 1 \cdots 1}_{n-(t+t_0+2k)}}_{t} < 1,$$

which is a contradiction $(|a_n| \in N \quad a_n \neq 0)$. Consequently, the set $\tilde{E}_k(p, a)$ is finite for every a > 0 and every $k, p \in N$.

Corollary 1. For every constant a > 0 and any positive integers $k, l, p \in N$, the class of connected graphs $\tilde{E}_k^l(p, a)$ is finite.

Proof. Without loss of generality, we can assume that $k \ge l$. Let G be any graph from the class $\tilde{E}_k^l(p, a)$. Since

$$a \ge \sum_{i=k+1}^{n-l} |\lambda_i|^p = \sum_{i=k+1}^{n-k} |\lambda_i|^p + \sum_{i=n-k+1}^{n-l} |\lambda_i|^p \ge \sum_{i=k+1}^{n-k} |\lambda_i|^p$$

we have $G \in \tilde{E}_k(p, a)$, thus $\tilde{E}_k^l(p, a) \subseteq \tilde{E}_k(p, a)$. Since the class $\tilde{E}_k(p, a)$ is finite for every a > 0 and every $k, p \in N$, we get the statement. \Box

References

- D.Cvetković, M.Doob and H.Sachs, Spectra of Graphs-Theory and Application, Deutscher Verlag der Wissenschaften, Berlin and Academic Press, NewYork, 1982.
- [2] M.Lepović, Some kinds of energies of graphs, Discrete Mathematics 128(1994), 277-282.
- [3] A.Torgašev, On infinite graphs with three and four non-zero eigenvalues, Bull. Serb. Acad. Sci. et Arts LXIV (Sci. Math.) 11(1981), 39-48.

FACULTY OF SCIENCE INSTITUTE OF MATHEMATICS AND INFOR-MATICS P.O.BOX 60, RADOJA DOMANOVIĆA 12 34000 KRAGUJEVAC SERBIA AND MONTENEGRO *E-mail address*: mmmvl@kg.ac.yu